
MACROS: TIPS, TECHNIQUES, AND EXAMPLES
Andrew M. Traldi, Advanced Quantitative Solutions, Inc., Alpharetta, GA

ABSTRACT

Most SAS® users are aware that SAS has a macro
facility but might be unsure of how they can use it or are
fearful that macros are too difficult. Although macros
can be complex, they can be very helpful in writing
general-purpose SAS programs; in some instances,
they are absolutely critical to an application.

WHAT IS THE SAS MACRO FACILITY?

The purpose of the SAS macro language is to generate
text which is used in SAS programs; this text can be
any valid SAS code: statements, variables, text strings,
PROC steps, etc. In its simplest form, a macro variable
can be used for text substitution in SAS code. Consider
the following example:

%let state=GA;
%let month=Jul2001;
…
proc print data=
permlib.sales(where=(state_code=”&state”
and month_year=input(“&month”,monyy7.));
title “Sales report for &state / &month”;
run;

These statements could be useful if you provide
reporting by month and region and you want to be able
to generate reports for different states and months
easily. This example assumes that there is a dataset
PERMLIB.SALES that contains sales data and has
variables state_code and month_year that we can
use to select the desired observations. Note that we
haven’t even used a macro here, just macro variables
for simple text substitution.

One important difference between macro code and
SAS code is that the macro code is compiled prior to
regular SAS code, and the code generated by the SAS
macro compiler is then processed by the SAS compiler.
Here is an example that illustrates this difference:

data dumb;
if 1 eq 2 then do;
 * this will never be executed!;
 xxxyyyzzz;
end;
else do;
 put ‘Hello’; …
end;
run;

203 data dumb;
204 if 1 eq 2 then do;
205 * this will never be executed!;
NOTE: SCL source line.
206 xxxyyyzzz;

 180
ERROR 180-322: Statement is not valid or
it is used out of proper order.

207 end;
208 else do;
209 put 'Hello';
210 end;
211 run;

%macro dumb;
data dumb;
%if 1 eq 2 %then %do;
 %* This will never be compiled!;
 xxxxxyyyyy;
%end;
%else %do;
 put ‘Hello’;
%end;
run;
%mend dumb;
%dumb

MPRINT(DUMB): data dumb;
MPRINT(DUMB): put 'Hello';
MPRINT(DUMB): run;

Hello

In the first part of this example, even though the
statement in the if 1 eq 2 then do group will
never be executed, it is still compiled and causes a
syntax error. In the second case, the statement within
the %if 1 eq 2 %then %do group is successfully
compiled by the macro compiler, but because it is never
executed, it is never passed to the SAS compiler. This
is an example of conditional execution vs. conditional
compilation.

ENVIRONMENT

A short discussion of the macro variable environment is
probably in order. The environment can be explicitly
specified with either the %global or the %local
statement. The value of a global macro variable is
available throughout the program – open code as well
as within macros. A local macro variable’s value is
available only in the macro where it is defined
(therefore, a %local statement is not valid in open
code).

Consider the following example:

%global var1;
%let var1=hello;
%let var2=world;
%put ** in open code var1=&var1
var2=&var2 **;

%macro test;

%put ** in test: var1=&var1 var2=&var2
var3=&var3 **;
%mend test;
%test

%macro test2;
%local var2;
%let var1=hi;
%let var2=universe;
%let var3=hello, world;
%put ** in test2: var1=&var1 var2=&var2
var3=&var3 **;
%test;
%mend test2;
%test2;
%test

%put ** in open code var1=&var1
var2=&var2 var3=&var3 **;

Here is the resulting SASLOG:

1 %global var1;
2 %let var1=hello;
3 %let var2=world;
4 %put ** in open code var1=&var1
var2=&var2 **;
** in open code var1=hello var2=world **
5
6 %macro test;
7 %put ** in test: var1=&var1
var2=&var2 var3=&var3 **;
8 %mend test;
9 %test
WARNING: Apparent symbolic reference VAR3
not resolved.
** in test: var1=hello var2=world
var3=&var3 **
10
11 %macro test2;
12 %local var2;
13 %let var1=hi;
14 %let var2=universe;
15 %let var3=hello, world;
16 %put ** in test2: var1=&var1
var2=&var2 var3=&var3 **;
17 %test;
18 %mend test2;
19 %test2;
** in test2: var1=hi var2=universe
var3=hello, world **
** in test: var1=hi var2=universe
var3=hello, world **
20 %test
WARNING: Apparent symbolic reference VAR3
not resolved.
** in test: var1=hi var2=world var3=&var3
**
21
22 %put ** in open code var1=&var1
var2=&var2 var3=&var3 **;
WARNING: Apparent symbolic reference VAR3
not resolved.
** in open code var1=hi var2=world
var3=&var3 **

The default environment for a macro variable is what I
would call downward global. That is, the value of the
macro variable can be referenced (and changed) in the
environment where it first appears (open code or a
macro) as well as in any macros which are invoked
from that environment. In the first statement, the
%global isn’t really necessary, because the
assignments are made in open code. However, note
the behavior of the macro variable var3 – which is not
given an explicit environment with either a %global or
%local statement when it is defined in macro test2 –
when macro test is invoked from macro test2, the value
of var3 is available, but not when it is invoked from
open code. Note also that var2 is declared as a local
variable in macro test2, so that the value that it is
assigned only remains while macro test2 is executing –
when test is invoked again in open code, the value
given to var2 inside of macro test2 is no longer
available. This may seem a little cumbersome at first,
but it allows for a great deal of flexibility.

TIPS
Define all variables as either global or local
Set aside specific variables for %do loop indices
and always define them as local to avoid
inadvertently changing their values in other macros.

ASSIGNING VALUES TO MACRO
VARIABLES

We have seen how macro variables can be assigned
values with the %let statement. However, there are
many instances where we need to reference SAS
datasets for the values that we want. The CALL
SYMPUT statement is used to assign values to macro
variables during DATA step execution, while the
SYMGET function is used to retrieve values during DATA
step execution (macro variables can also be resolved
directly, during DATA step compilation). This example
illustrates the use of SYMPUT and SYMGET:

%global mth yr;
%let mth=7;
%let yr=2002;

data _null_;
length test mthname $ 16;
* These statements are equivalent;
month=mdy(&mth,1,&yr);
put month= date9.;
month=mdy(SYMGET('mth'),1,SYMGET('yr'));
put month= date9.;
mthname=put(month,monname9.);
put mthname=;
* Now load into a macro variable;
CALL SYMPUT('mthname',mthname);
* Use SYMGET to get value;
test=SYMGET('mthname');
put test=;
test="&mthname";
put test=;
run;

%put ** &mthname **;

Note how we integrated the macro variable into a
regular SAS statement, first by resolving it directly and
then by using the SYMGET function. It is important to
remember that macro variables that are set using CALL
SYMPUT are not available to be resolved directly by the
macro compiler until after the DATA step is finished; this
distinction can be seen in the resulting SASLOG:

1 %global month year;
2 %let mth=7;
3 %let yr=2002;
4
5 data _null_;
6 length test mthname $ 16;
7 * These statements are equivalent;
8 month=mdy(&mth,1,&yr);
9 put month= date9.;
10
month=mdy(SYMGET('mth'),1,SYMGET('yr'));
11 put month= date9.;
12 mthname=put(month,monname9.);
13 put mthname=;
14 * Now load into a macro variable;
15 CALL SYMPUT('mthname',mthname);
16 * Use SYMGET to get value;
17 test=SYMGET('mthname');
18 put test=;
19 test="&mthname";
WARNING: Apparent symbolic reference
MTHNAME not resolved.
20 put test=;
21 run;

NOTE: Character values have been
converted to numeric values at the places
given by:

 (Line):(Column).
 11:11 11:29

month=01JUL2002
month=01JUL2002
mthname=July
test=July
test=&mthname
NOTE: DATA statement used:

 real time 0.01 seconds
 cpu time 0.01 seconds

22 %put ** &mthname **;
** July **

Note that the macro variable mthname cannot be
resolved directly while the DATA step is still executing,
but is available in the %put statement immediately
afterwards. Also, even though the macro variables
month and year contained numeric values, SAS has to
perform a character to numeric conversion when the
SYMGET function is used. This is because the macro
compiler treats all macro variables as text strings, even
when they are valid numeric values1.

1 In SAS/SCL applications, the functions SYMGETN and
SYMGETC are available to retrieve macro variables as
into numeric and character variables, respectively.

Question: What is the environment for the macro
variable mthname, since it is not defined with a %local
or %global statement?

Answer: Since it is defined by a CALL SYMPUT in
open code, it is a global macro variable. However, if
this DATA step were inside a macro, then the value
would not be available outside the macro.

Another method of setting macro variables is to use
PROC SQL. For example, suppose we want a list of all
numeric variables in a dataset. Here is an example
using PROC CONTENTS and PROC SQL.

33 proc contents data=sasuser.admit
noprint out=_cont_;
34 run;

NOTE: The data set WORK._CONT_ has 9
observations and 40 variables.
NOTE: PROCEDURE CONTENTS used:

 real time 0.01 seconds
 cpu time 0.01 seconds

35
36 proc sql noprint;
37 select name into: numeric_vars
separated by ' '
38 from _cont_
39 where type eq 1;
40 quit;
NOTE: PROCEDURE SQL used:
 real time 0.00 seconds
 cpu time 0.00 seconds
41
42 %put &numeric_vars;
Age Date Fee Height Weight

PARAMETERS

The macro language allows for passing of parameters
in much the same way as other programming
languages; those of you who develop SAS/AF
applications or have used PASCAL or FORTRAN are
probably used to passing parameters to functions and
subroutines.

A SAS macro can have two types of parameters:
positional and keyword. Positional parameters are
defined only by their order in the macro invocation and
must always be included in the macro invocation, while
keyword parameters are defined by the name of the
parameter and do not have to be included. A macro
can contain both positional and keyword parameters,
but the positional parameters must come first. Here is
an example of a macro with keyword parameters:

%macro smart_print(dsn=_LAST_,title=,by=,
id=,var=,dsnopt=,options=);
%* print the specified dataset, using the
specified variables in the BY, ID, and
VAR statements and included options;

%if &by ne %then %let by=BY &by;
%if &id ne %then %let id=ID &id;
%if &var ne %then %let var=VAR &var;

%if %quote(dsnopt) ne %quote() %then
 %let dsnopt=%str ((&dsnopt));

TITLE "&title ";
PROC PRINT &options DATA=&dsn &dsnopt;
&by;
&id;
&var;
RUN;
%mend smart_print;

Here is the macro invocation and resulting SASLOG:

%smart_print(dsn=sales,var=name customer
amount,dsnopt=%str(where=(state='GA')),by
=state,title=GA sales, options = noobs);

11 %macro smart_print
12
(dsn=_LAST_,title=,by=,id=,var=,dsnopt=,o
ptions=);
13 %* print the specified dataset,
using the specified variables
14 in the BY, ID, and VAR statements
and included options;
15
16 %if &by ne %then %let by=BY &by;
17 %if &id ne %then %let id=ID &id;
18 %if &var ne %then %let var=VAR &var;
19 %if %quote(dsnopt) ne %quote() %then
 %let dsnopt=%str ((&dsnopt));
20
21 TITLE "&title ";
22 PROC PRINT &options DATA=&dsn
&dsnopt;
23 &by;
24 &id;
25 &var;
26 RUN;
27 %mend smart_print;
28 options mprint;
29 %smart_print(dsn=sales,var=name
customer amount,dsnopt=%str(where=(state
=
29 ! 'GA')),by=state,
30 title=GA sales, options = noobs);
MPRINT(SMART_PRINT): TITLE "GA sales ";
MPRINT(SMART_PRINT): PROC PRINT noobs
DATA=sales (where=(state = 'GA')) ;
MPRINT(SMART_PRINT): BY state;
MPRINT(SMART_PRINT): ;
MPRINT(SMART_PRINT): VAR name customer
amount;
MPRINT(SMART_PRINT): RUN;

NOTE: There were 100 observations read
from the data set WORK.SALES.

 WHERE state='GA';
NOTE: PROCEDURE PRINT used:

 real time 0.31 seconds
 cpu time 0.03 seconds

Note how the order of the parameters in the invocation
is not the same as in the macro declaration and that we
did not have to specify the id parameter. If we had

used positional parameters, we would have had to not
only specify the parameters in the same order but also
use placeholders for the unneeded parameters.

Here is the definition and invocation of the same macro
with positional parameters:

%macro smart_print(dsn,title,by,id,
var,dsnopt,options);

…
%mend smart_print;

%smart_print(sales,GA sales,state,,name
customer,%str(where=(state='GA')),noobs);

Here, we need to include an extra placeholder for the
id parameter and specify the parameters in the same
order as in the definition. For more complex macros,
keyword parameters are preferable.

Note that this print macro did not perform any error-
checking (ensuring that the data set exists, that the
variables are found, that the options given are valid,
etc.). Often, a decision has to be made about how
much programming time is worth investing in a macro –
depending on how often it will be used, whether it will
be made available to other users, etc.

In some instances, you may want to define a macro
which will have a varying number of parameters. There
are two different ways to do this. In a simple case, you
could define one parameter and then extract the
individual values out of it within the macro. For
example, here is a macro that will print multiple
datasets:

%macro _printmany(dsns);
%* multiple datasets to be printed are
in parameter dsns – separated by spaces ;
%local i dsname;
%let i=1;
%let dsname=%scan(&dsns,&i,%str());
%do %while (&dsname ne);
 proc print data=&dsname;
 run;
 %let i=%eval(&i+1);
 %let dsname=%scan(&dsns,&i,%str());
%end;
%mend _printmany;
%_printmany(sasuser.admit sasuser.company
sasuser.credit);

Here is the resulting SASLOG:

MPRINT(_PRINTMANY): proc print
data=sasuser.admit;
MPRINT(_PRINTMANY): run;

NOTE: There were 21 observations read
from the data set SASUSER.ADMIT.

MPRINT(_PRINTMANY): proc print
data=sasuser.company;
MPRINT(_PRINTMANY): run;

NOTE: There were 8 observations read from
the data set SASUSER.COMPANY.

MPRINT(_PRINTMANY): proc print
data=sasuser.credit;
MPRINT(_PRINTMANY): run;

NOTE: There were 10 observations read
from the data set SASUSER.CREDIT.

This allows for printing a different number of datasets
by including all of them in the macro invocation; the
%scan function – which is analogous to the SCAN
function in base SAS – is used to go through the
passed parameter and process each dataset.

Another way to allow for a variable number of
parameters is to use the PARMBUFF option on the
macro declaration:

%macro _printmany / PARMBUFF;
%* multiple SAS datasets to be
 printed are passed and will be
 in macro variable syspbuff;
%local i sysbuff dsname;
%* get rid of parenthesis in syspbuff;
%let sysbuff=%substr
 (&syspbuff,2,%length(&syspbuff)-2);
%let i=1;
%let dsname=
 %scan(%quote(&sysbuff),&i,%str(,));
%do %while (&dsname ne);
 proc print data=&dsname;
 run;
 %let i=%eval(&i+1);
 %let dsname=%scan
 (%quote(&sysbuff),&i,%str(,));
%end;
%mend _printmany;
%_printmany(sasuser.admit,sasuser.company
 sasuser.credit);

Note that this allows the flexibility of including commas
in the passed parameter; with positional or keyword
parameter lists, the commas would be interpreted as
delimiters between parameters.

SOME SPECIAL RULES FOR RESOLVING
MACRO VARIABLES

There are many rules for macro variable resolution; I
will go over a few of the more common ones here.

You can use a period (.) to indicate to the macro
compiler that you have reached the end of a macro
variable name:

%let x=hello,;
%let x1=hello, world;
%let y=1;

%put ** &x1 **;
%put ** &xy **;
%put ** &x.y **;
%put ** &x.&y **;
%put ** &&x&y **;

Here are the results:

** hello, world **

WARNING: Apparent symbolic reference XY
not resolved.
** &xy **

** hello,y **

** hello,1 **

** hello, world **

The first %put statement produces hello, world –
as expected. The second statement produces a
warning that the macro variable xy does not exist. The
third statement produces the string hello,y (note that
there is no period), while the fourth produces hello,1
(because it resolves the macro variable x and then the
macro variable y). The final statement produces
hello, world – it first resolves &&x&y to &x1 and
then resolves &x1 to hello, world.

There are some instances where you don’t want the
macro compiler to attempt to resolve what follows the &
or % sign. In that case, you can use the %NRSTR
function to indicate that the text inside the parenthesis
should not interpreted as text and not macro variables
or macro invocations:

%let x=1;
%let y=2;
%let z=&x + &y;
%let zz=%nrstr(&x + &y);
%put ** &z **;
** 1 + 2 **
%put ** &zz **;
** &x + &y **

In the first instance, the macro variables x and y are
resolved, but in the second instance the text strings &x
and &y are produced. This brings up another
interesting question – what is the value of the macro
variable j after the following %let statement?

%let j=1+1;

It is the text string 1+1, not the text string 2. This might
cause some unexpected results, for example:

%macro _uhoh(start);
%local j;
%let j=&start + 1;
%if &j eq 2 %then %do;
 …
%end;
%mend _uhoh;
%_uhoh(1);

When this macro is invoked, the %if &j eq 2 %then
%do loop will not be executed by the macro compiler.
Instead, the statement %let j=%eval(&start+1);
should be used. This instructs the macro compiler to
perform an arithmetic operation and put the result in the
macro variable j. This only works for the basic
arithmetic functions and only integer results are
produced (for example, the statement %let
j=%eval(6/4); will put the value 1 – not 1.5 – in the
macro variable j).

Finally, caution should be used when macro variables
can contain characters that have special meaning to the
macro or SAS compiler. For example, if a macro
variable contains a mismatched quote mark and it is
resolved, it will cause problems:

data null;
set orders;
if customer eq 123 then do;
 call symput(‘firstname’,first_name);
 call symput(‘lastname’,last_name);
 stop;
end;
run;

%let fullname = &lastname, &firstname;
proc print data=orders
 (where=(customer eq 123));
title “All orders for &fullname”;
run;

Now, if the variable last_name contains a single quote
(e.g. O’Brien), this will create havoc for the SAS
compiler. It will keep looking for the closing quote to
match the end the quoted string in the macro variable
fullname. In this instance, you would want to use one
of the quoting functions available in the macro
language. Here is a brief description of the available
functions:

The %QUOTE and %NRQUOTE functions are used to
mask special characters and operators – NRQUOTE
also masks the & and %. Unmatched quotes or
parentheses must be marked with a leading %.

The %BQUOTE and %NRBQUOTE functions are similar,
but unmatched quotes or parentheses do not need to
be marked.

%SUPERQ masks everything – it is also the only one of
the quoting functions that accepts the macro variable
name without the leading ampersand.

In the above case, any of the following statements
would work:

%let fullname= %bquote(&lastname),
%bquote(&firstname) ;
%let fullname= %nrbquote(&lastname),
%nrbquote(&firstname) ;

%let fullname= %superq(lastname),
%superq(firstname) ;

MACRO STYLE AND COMMENTS

There are style issues when writing macro code, just as
there are for regular SAS code.

Use good, clean style. This is especially important
because macro code is usually less readable than base
SAS code. Some examples of good macro style
include: indenting %do groups, using white space, and
– most importantly – using comments liberally.

Use keyword parameters and define macro variables as
needed.

Everyone has programming conventions that he or she
likes to use. Here are a few that I use to help keep my
macro code as readable as possible:

Use lower case for macro code – except text
strings that must be upper case.

Avoid use of the %goto statement – it makes the
program very hard to follow

Define and initialize all global macro variables at
the beginning of the program.

Use the %local statement to define macro
variables that will only be needed inside the
current macro.

Use the %* rather than the * comment
statements, understanding the difference
between them:

%* is a macro compiler comment – the
macro compiler will ignore the statement and
it will not print in the SASLOG
* is a SAS comment – the macro compiler
will not ignore the statement, so it must be an
appropriate place in the macro code for a
SAS comment.

Here is an example – where would the use of a *
comment instead of a %* comment cause an
error?

%macro _missing(var=,type=);
%* this macro will set a variable
var to missing, vartype=C indicates
a character variable, else numeric -
must be called from a DATA step;

%* if character, use blank ;
%if %upcase(type) eq C %then %do;
 &var = ' ';
%end;

%* if numeric, use .;
%else %do;
 &var = .;
%end;
%mend _missing;

 data dumb;
if x=0 then
 %_missing(var=Y,type=N);
run;

If the first or third comments were written using a *
comment, this DATA step would produce a syntax
error. If the first comment had a * comment, the SAS
compiler would see this statement: if x=0 then *
this macro will … ; Y=. This will of course
cause an error, because an inline comment must be
enclosed within /* and */. Why would the third
comment cause a problem? The macro compiler is
looking for an %else statement immediately after the
end of the first %do loop – it ignores the %* comment,

but treats the * comment as a statement, and
therefore will produce an error when it comes to the
%else statement. Incidentally, this can happen in base
SAS as well – note that the following will cause an
error:

data one;
…
if x=1 then do;
 …
end ;;
else do;
 …
end;
run;

In most cases, a double semi-colon does not matter to
the SAS compiler, but here it expects the else
statement to immediately follow the end of the do-loop,
and the extra semi-colon causes it to compile an
additional statement, producing an error.

It’s also important to remember that the de-bugging
process for macro code is more difficult than for regular
SAS code. Because of that, it is even more critical to
document programs that include macros. The mprint,
mtrace, and symbolgen options make it easier to
examine what the macro compiler is generating.

OTHER RULES FOR MACROS

It is important to place macro invocations in your SAS
code in such a way that the generated code does not
cause problems for the SAS compiler, even if the macro
itself generates the SAS code properly.

data neworders;
set orders;
…
if order_amount gt 100 then do;
 %smart_print(dsn=neworders);
 stop;
end;
run;

This will fail because the smart_print macro (defined
earlier in this paper) generates a PROC PRINT, so it
cannot be placed in the middle of a DATA step. This
was a somewhat trivial example and the problem would
be quickly identified and corrected; however, here is
one that might be more difficult to spot:

%macro swap(var1,var2);
%* swap the values of two variables;
 temp=&var1;
 &var1=&var2;
 &var2=_temp_;
%mend swap;

data test;
infile cards;
input x1 x2;
if x1 > x2 then %swap(x1,x2);
cards;

1 2
3 4
5 1
;

run;

It appears that the swap macro will exchange the
values of x1 and x2 in the third observation, leaving
their values unchanged in the first two observations.
However, here are the results of a PROC PRINT:

proc print data=test;
Title ‘using swap when x1>x2’;
var x1 x2;
run;

using swap when x1>x2
Obs x1 x2
 1 2 .
 2 4 .
 3 1 5

Here is the code as it appears in the SASLOG:

1130 data test;
1131 infile cards;
1132 input x1 x2;
1133 if x1 > x2 then %swap(x1,x2);
MPRINT(SWAP): _temp_=x1;
MPRINT(SWAP): x1=x2;
MPRINT(SWAP): x2=_temp_;
1134 cards;

NOTE: The data set WORK.TEST has 3
observations and 3 variables.

What went wrong? Even with the MPRINT option
turned on, it may not be immediately apparent. The
swap macro produces three assignment statements,
but is called within a single if .. then statement, so
the second and third statements are always executed,
regardless of the results of the if x1 > x2
comparison. It is the same as the following code:

if x1>x2 then _temp_=x1;
x1=x2;
x2=_temp_;

Therefore, when if x1<x2 is false, the value of x2 is
assigned to x1 and x2 becomes missing (since
temp is missing).

In this case, the macro either needs to generate do;
and end; statements or be invoked within a do group in
the DATA step:

%macro swap(var1,var2);
do;
 temp=&var1;
 &var1=&var2;
 &var2=_temp_;
end;
%mend swap;

OR
data test;

…
if x1 > x2 then do;
 %swap(x1,x2)
end;
run;

AN EXAMPLE WITH UTILITY MACROS

This is an example of how macros can be used to save
time and run programs more efficiently. For example,
suppose that there are large flat files that contain
transactional records that come out of a billing system
each month for different markets, and that these
become available at different times. Rather than
waiting for all the files to be available, we would like to
provide reporting on each market as soon as possible.

The following utility macros typically would be included
in a macro library or an autoexec file.

%macro _mprint;
%global mp _notes;
%* return current mprint and notes
setting in mp and _notes ;
%let mp=%sysfunc(getoption(mprint));
%let _notes=%sysfunc(getoption(notes));
%mend _mprint;

%macro exist(_dsn_);

%* determine if a dataset exists -- if
so, return the number of obs., number of
variables, date last modified, and
whether there is an index in global macro
variables before ;

%global exist nobs nvars dsndate isindex;
%local rcid dsid;
%* try to open dataset;
%let dsid = %sysfunc(open(&_dsn_));
%if &dsid ne 0 %then %do;
 %let exist=yes;
 %let nobs=%sysfunc(attrn(&dsid,NOBS));
 %let nvars=
 %sysfunc(attrn(&dsid,NVARS));
 %let dsndate=
 %sysfunc(attrn(&dsid,MODTE));
 %let isindex=
 %sysfunc(attrn(&dsid,ISINDEX));
 %let rcid=%sysfunc(close(&dsid));
%end;
%else %do;
 %let exist=no;
 %let nobs =%str(.);
 %let nvars=%str(.);
 %let dsndate=%str(.);
 %let isindex=%str(.);
%end;
%mend exist;

%macro fexist(fname);
%* determine if an external file exists
 if so, return the date and date/time
 of file (based on directory);

%global fexist _fdate _fdatetime;
%local rc;

%let _fdate=.;
%let _fdatetime=.;

%mprint;
%if &_debug eq Y %then %str(options
mprint notes;);
%else %str(options nomprint nonotes;);

%let fexist=no;
%if "&fname" ne "" %then %str(
 data _null_;
 if 0 then infile "&fname";
 call symput('fexist','yes');
 stop;
 run;
);

%if &fexist eq yes %then %do;
 * get creation date of ext. file ;

data _null_;
rc=system("ls -l &fname > _dir.txt");
call symput('rc',(put(rc,6.0));
run;

 %if %eval(&rc) eq 0 %then %do;

 data _null_;
 length dummy1-dummy5 $ 18
 timeyearc $ 5 mthc $ 3;
 infile "_dir.txt";
 input dummy1-dummy5 mthc date

 timeyearc;
 do i=1 to 12;

 if upcase(mthc) eq upcase(put
 (mdy(i,1,2003),monname3.)) then
 mth=i;

 end;
 if index(timeyearc,':') then do;

* current year -- use time ;
yr=year(today());
time=input(timeyearc,time5.2);

nd;
 else do;
 * previous year, time=11:59 pm;

 time=input('23:59',time5.2);
 yr=timeyearc;

 end;
 fdate=mdy(mth,date,yr);
 ftime=fdate * 60 * 60 * 24 + time;
 call symput('_fdate',put(fdate,5.));
 call symput('_fdatetime',
 compress(put(ftime,best18.)));
 run;

 %end;
%end;

options &mp &_notes;
%mend fexist;

* This program will read transactional
files for each market and create datasets
for reporting. It will update a dataset
indicating which markets are available. ;

%let month=jan2003; * desired month;

* Load market codes into macro variables
and set value of mkts. Typically, this
would be done either in an autoexec file
or with a format, etc. – here we are just
using %let statements;

* This has a dummy input line and reads
in one variable – a real transactional
file would have more variables;

%let mkt1=ATL;
%let mkt2=MIA;
%let mkt3=ORL;
%let mkt4=JAX;
%let mkt5=LEX;
%let mkts=5;

libname out 'billing/sasdata';

%macro _read;
%local i filenme read;

%do i=1 %to &mkts;
 %local complete&i;
 %let filenme=
 billing/&month._&&mkt&i...txt;
 %* see if transactional file exists;
 %fexist(&filenme);
 %* Check to see if we already have
 a dataset for this market;
 %exist(out.&&mkt&i.._&month);
 %if &exist eq no %then %do;
 %* No dataset - proceed if
 transactional file is there;
 %if &fexist eq yes %then %do;
 data out.&&mkt&i.._&month;
 infile "&filenme" end=last;
 input i;
 if last then do;
 file print;
 put "reading file for &&mkt&i";
 end;
 run;
 %end;
 %else %do;
 data _null_;
 file print;
 put "&&mkt&i file not available";
 run;
 %end;
 %end;
 %else %do;
 %* dataset is there, compare to
 date of transactional file ;
 data _null_;
 if &dsndate le &_fdatetime then
 call symput('read', 'Y');
 else call symput('read', 'N');
 run;

 %if &read eq N %then %do;
 data _null_;
 file print;
 put "dataset for &&mkt&i /"
 "&month already exists";
 run;
 %end;
 %else %do;

 %* read new transactional file;
 data out.&&mkt&i.._&month;
 infile "&filenme" end=last;
 transdate=&_fdatetime;
 dsndate=&dsndate;
 if last then do;
 file print;
 put "updating dsn " dsndate
 datetime16. /
 "with &&mkt&i file "
 transdate datetime16.;
 end;
 input i;
 run;
 %end;
 %end;
%end;

%* produce a dataset indicating which
markets are available;
%do i=1 %to &mkts;
 %exist(out.&&mkt&i.._&month);
 %let completed&i = %upcase(&exist);
%end;
data out.&month._markets;
length market complete $ 3;
%do i=1 %to &mkts;
 market="&&mkt&i";
 complete="&&completed&i";
 output;
%end;
run;

proc print data=out.&month._markets;
title "Markets that are now available for
&month";
run;
%mend _read;

Here are some quick notes about this program. Note
the use of the && to resolve the macro variables mkt1,
mkt2, etc. This is somewhat analogous to the way
arrays are used in a DATA step. Also, as we discussed
earlier, we need an extra period in the dataset name
out.&month._markets to indicate to stop resolving
the macro variable name at that point.

Let’s look at portions of the SASLOG and OUTPUT :

MACROGEN(FEXIST): options nomprint
nonotes;
MPRINT(_READ): data _null_;
MPRINT(_READ): if 1370908641.23525 le
1370908260 then call symput('read', 'Y');
MPRINT(_READ): else call symput('read',
'N');
MPRINT(_READ): run;

NOTE: DATA statement used:
 real time 0.00 seconds
 cpu time 0.00 seconds

MPRINT(_READ): data _null_;
MPRINT(_READ): file print;
MPRINT(_READ): put "dataset for ATL /"
"jan2003 already exists";
MPRINT(_READ): run;

MPRINT(FEXIST): ;

MACROGEN(FEXIST): options nomprint
nonotes
ERROR: Physical file does not exist,
/sasdata/shared/home/traldia/billing/jan2
003_ORL.txt.
MPRINT(FEXIST): ;
MPRINT(_READ): data _null_;
MPRINT(_READ): file print;
MPRINT(_READ): put "ORL file not
available";
MPRINT(_READ): run;

MPRINT(_READ): data out.JAX_jan2003;
MPRINT(_READ): infile
"billing/jan2003_JAX.txt" end=last;
MPRINT(_READ): input i;
MPRINT(_READ): if last then do;
MPRINT(_READ): file print;
MPRINT(_READ): put "reading file for
JAX";
MPRINT(_READ): end;
MPRINT(_READ): run;

NOTE: The data set OUT.JAX_JAN2003 has
10000 observations and 1 variables.
NOTE: The DATASTEP printed page 36.

MPRINT(_READ): data _null_;
MPRINT(_READ): if 1370908641.29471 le
1370908740 then call symput('read', 'Y');
MPRINT(_READ): else call symput('read',
'N');
MPRINT(_READ): run;

MPRINT(_READ): data out.LEX_jan2003;
MPRINT(_READ): infile
"billing/jan2003_LEX.txt" end=last;
MPRINT(_READ): transdate=1370908740;
MPRINT(_READ):
dsndate=1370908641.29471;
MPRINT(_READ): if last then do;
MPRINT(_READ): file print;
MPRINT(_READ): put "updating dsn "
dsndate datetime16. / " with LEX file "
transdate
datetime16.;
MPRINT(_READ): end;
MPRINT(_READ): input i;
MPRINT(_READ): run;

NOTE: 10000 records were read from the
infile "billing/jan2003_LEX.txt".
 The minimum record length was 1.
 The maximum record length was 5.
NOTE: The data set OUT.LEX_JAN2003 has
10000 observations and 3 variables.
NOTE: The DATASTEP printed page 37.

MPRINT(_READ): data out.jan2003_markets;
MPRINT(_READ): length market complete $
3;
MPRINT(_READ): market="ATL";
MPRINT(_READ): complete="YES";
MPRINT(_READ): output;
MPRINT(_READ): market="MIA";
MPRINT(_READ): complete="YES";
MPRINT(_READ): output;
MPRINT(_READ): market="ORL";
MPRINT(_READ): complete="NO";
MPRINT(_READ): output;
MPRINT(_READ): market="JAX";

MPRINT(_READ): complete="YES";
MPRINT(_READ): output;
MPRINT(_READ): market="LEX";
MPRINT(_READ): complete="YES";
MPRINT(_READ): output;
MPRINT(_READ): run;

MPRINT(_READ): proc print
data=out.jan2003_markets;
MPRINT(_READ): title "Markets that are
now available for jan2003";
MPRINT(_READ): run;

NOTE: There were 5 observations read from
the data set OUT.JAN2003_MARKETS.

OUTPUT

dataset for ATL /jan2003 already exists

dataset for MIA /jan2003 already exists

ORL file not available

reading file for JAX
updating dsn 10JUN03:23:57:21
with LEX file 10JUN03:23:59:00

Obs market complete

1 ATL YES
2 MIA YES
3 ORL NO
4 JAX YES
5 LEX YES

This is an example of the type of application that can be
written using the SAS macro language. Although there
is some additional development time when first writing a
program like this, it will often save time when
implemented in a production-like environment where
the program is run often. Additionally, the ability to
conditionally generate certain DATA and PROC steps
gives the application much more flexibility.

CONCLUSION

We have just scratched the surface of what can be
done with macros. For the beginning user, they can be
used to make programs more automated. Once we feel
more comfortable with them and understand how
powerful they are, we can use them in complex
production applications.

CONTACT INFORMATION

Your comments and questions are encouraged. Please
contact the author:

Andrew M. Traldi
Advanced Quantitative Solutions, Inc.
5825 Culler Court
Alpharetta, GA 30005
770-418-9167
atraldi@bellsouth.net

